FUZZY PRE GENERALIZED SEMI-CLOSED SETS

M. M. SALASDEENA¹ AND M. SENTAMILSELVI²

¹ Research Scholar in Mathematics, Vivekanandha college of arts and sciences for women (Autonomous) Tiruchengode Namakkal (Dt), Tamilnadu, India.

²Assistant professor Department of Mathematics, Vivekanandha college of arts and sciences for women (Autonomous) Tiruchengode Namakkal (Dt),Tamilnadu,India.

Abstract : In this paper, we introduced a new classes of sets called fuzzy pre-generalized semi-closed sets in fuzzy topological spaces is introduced and investigate their properties. As an application of this set we also introduces the new kinds of separation axioms namely, $F_{pg}T_{1/2}$ -space F_{pgs} -continuity and F_{pgs} irresolute mappings. Fuzzy pre generalized semi $T_{1/2}$ fuzzy pre generalized semi $T_{3/4}$ spaces and fuzzy pre semi $T_{1/3}$ and characterized them.

Juzzy pre semi $I_{1/3}$ and characterized them.

Key words and phrases : Fuzzy pre generalized semi-closed sets, Fuzzy pre generalized semi-continuity, Fuzzy pre generalized semi-irresoluteness, Fuzzy semi- $T_{1/2}$ space.

INTRODUCTION :

We define a new class of fuzzy pre generalized sets namely, fuzzy semi-closed sets and investigate their properties. The fts X denote a fuzzy topological spaces (X, τ) . Fuzzy sets in X will be denoted by (v, η, λ, μ) . The operators can be denoted by fuzzy closure and fuzzy interior. The concept of fuzzy semi-preopen sets and introduced fuzzy pre generalized $T_{1/2}$ spaces, F_{pgs} continuity and F_{pgs} - irresoluteness. The aim of this paper is to introduce the notion of fuzzy pre generalized semi-closed sets, an alternative generalization of fuzzy semi pre open set in fuzzy topological spaces. We introduce a class of fuzzy topological spaces, called $F_{pg}T_{1/2}$ - spaces and obtain some of its characterizations. Further, we also introduce F_{pgs} - continuity and F_{pgs} - irresoluteness.

1.1 Definition : A fuzzy set A of (X, τ) is called

- 1) Fuzzy semi open (shortly, Fs- open) if $A \leq Cl(int(A))$ and a fuzzy semi closed (shortly, Fs-closed) if $Int(Cl(A)) \leq A$.
- 2) Fuzzy pre open (shortly, *Fp*-open) if $A \le Int(Cl(A))$ and a fuzzy pre closed (shortly, *Fp* closed) if $Cl(Int(A)) \le A$.
- 3) Fuzzy pre semi open (shortly, Fps open) if $A \le Int Cl(Int(A))$ and a fuzzy pre semi- closed (shortly Fps closed) if $Cl Int(Cl(A)) \le A$.

1.2 Definition :

A fuzzy set ν in fuzzt topological space (X, τ) is called

- 1) Fuzzy generalized closed set if $Cl\nu \leq \eta$ whenever $\nu \leq \eta$ and η is fuzzy open. We shortly denoted it as Fg- closed.
- 2) Fuzzy pre-generalized closed set if $pCl\nu \le \eta$ whenever $\nu \le \eta$ and ν is fuzzy semi open. We shortly denoted it as F_{pg} -closed set.
- 3) Fuzzy generalized semi- closed set if $sCl\nu \le \mu$ whenever $\nu \le \eta$ and η is fuzzy open. We shortly denoted it as F_{qs} closed set.
- 4) Fuzzy pre generalized semi- closed set if $psClv \le \eta$ whenever $v \le \eta$ and η is fuzzy open. We shortly denoted it as F_{pas} closed set.

1.3 Definition :

- A fuzzy topological space (X, τ) is said to be a
- 1) Fuzzy $T_{1/2}$ space if every F_g closed set is fuzzy closed.
- 2) Fuzzy semi- $T_{1/2}$ space if every F_{sg} closed set is fuzzy semi- closed.
- 3) Fuzzy pre- $T_{1/2}$ space if every F_{pg} closed set is fuzzy pre closed.

FUZZY SEMI – CLOSED SETS

2.1 Definition :

Let η be a fuzzy set in a fuzzy topological spaces (X, τ) . Then ν is called a fuzzy semi- closed set X if $spCl\eta \leq \nu$, whenever $\eta \leq \nu$ and ν is a F_g - open set in X.

2.2 Proposition :

Every fuzzy semi pre-closed set in a fuzzy topological space (X, τ) is fuzzy pre semi-closed.

Proof :

Let η be a fuzzy semi pre-closed set in a fuzzy topological space (X, τ) . Suppose that $\eta \le \nu$ and ν is a fuzzy generalized-open set in X. Since $spCl\eta = \eta$, it follows that $spCl\eta = \eta \le \nu$. Hence, η is fuzzy pre-semi-closed in X. The reverse implication in the above proposition is not true as seen in the following example.

Example :

Consider the fuzzy topological space (X, τ) , where $X = \{a, b, c\}$ and

$$\tau = \left\{ 0, 1, \eta = \frac{0.9}{a} + \frac{0.2}{b} + \frac{1}{c}, \nu = \frac{0.9}{a} + \frac{0}{b} + \frac{0}{c} \right\}.$$

Fuzzy closed sets in X are

$$0,1,\eta' = \frac{0.2}{a} + \frac{0.8}{b} + \frac{0}{c}, \nu' = \frac{0.2}{a} + \frac{1}{b} + \frac{1}{c}$$

So the family of fuzzy generalized-closed sets is

$$\{0,1,\eta',\nu',\frac{\alpha_1}{\alpha}+\frac{\alpha_2}{b}+\frac{\alpha_3}{c} \text{ either } \alpha_1 > 0.8 \text{ or } \alpha_2 > 0.2\}.$$

Hence the family of generalized open sets is

$$\Big\{0,1,\eta,\nu,\frac{\alpha_{1}}{a}+\frac{\alpha_{2}}{b}+\frac{\alpha_{3}}{c} \text{ either } \alpha_{1}<0.2 \text{ or } \alpha_{2}<0.8\Big\}.$$

Now

$$\nu = \frac{1}{a} + \frac{0.2}{b} + \frac{0}{a}$$

is not a fuzzy semi-pre closed set in X, for Int $\lambda = \nu$ and so, Int Cl Int $\lambda = Int Cl \nu = 1 > \lambda$.

Moreover, λ is fuzzy pre semi-closed. Indeed, let $\lambda \leq \mu$ and μ be fuzzy generalized open in X. Then $\mu = 1$ and $spCl\lambda \leq \mu$. From the succeeding two examples, it can be seen that fuzzy pre-semi-closedness is independent from fuzzy generalized semi-closedness. **Example :**

Consider the fuzzy topological space (X, τ) , where $X = \{a, b, c\}$ and

$$\tau = \left\{0, 1, \nu = \frac{0.7}{a} + \frac{0.3}{b} + \frac{0}{c}\right\}.$$

Fuzzy closed sets are :

 $0,1, \nu' = \frac{0.2}{a} + \frac{0.9}{b} + \frac{1}{c}$ So the family of fuzzy generalized closed sets in X is

$$\{0,1,\nu', and \ \frac{\alpha_1}{\alpha} + \frac{\alpha_2}{\nu} + \frac{\alpha_3}{\alpha} \ either \ 0.7 < \alpha_1 \ or \ 0.3 < \alpha_2\}$$

Hence the family of fuzzy generalized-open sets is

$$\left\{0,1,\nu,\frac{\alpha_1}{a} + \frac{\alpha_2}{b} + \frac{\alpha_3}{c} \text{ either } \alpha_1 < 0.2 \text{ or } \alpha_2 < 0.9\right\}$$

Now,

$$\lambda = \frac{0.7}{a} + \frac{0.2}{b} + \frac{0.2}{b}$$

is a fuzzy pre semi-closed set in X, for if $\lambda \leq \mu$ and μ is fuzzy generalized open set in X. Then $\mu = 1$. Hence, $spCl\lambda \leq \mu$. But, Int $Cl \lambda = 1, \lambda \leq \mu$ ν and Int Cl $\lambda = 1 > \nu$, so λ is not a fuzzy generalized closed set in X.

Example :

Consider the fuzzy topological space $(X, \tau) : X = \{a, b, c\}$ and

$$\tau = \left\{0, 1, \nu = \frac{0}{a} + \frac{1}{b} + \frac{1}{c}\right\}$$

Fuzzy closed sets are :

 $0, 1, \nu' = \frac{1}{a}$

So the family of fuzzy generalized closed sets in X is

$$\{0,1,\frac{a_1}{a}+\frac{a_2}{b}+\frac{a_3}{a} \text{ either } \alpha_1 > 0 \text{ or } \alpha_2 > 0\}.$$

Hence the family of fuzzy generalized open sets in X is

$$\{0,1,\nu,\frac{\alpha_1}{2}+\frac{\alpha_2}{2}+\frac{\alpha_3}{2} \text{ either } \alpha_1 < 1 \text{ or } \alpha_2 < 1\}$$

Now

$$\lambda = \frac{1}{a} + \frac{1}{b} + \frac{1}{a}$$

is not a fuzzy pre-semi-closed set in X; if $\lambda \leq \nu$ and λ is fuzzy generalized open set, but, Int Cl Int $\lambda = 1$, and hence, $spCl\lambda = 1 > \lambda$. But, λ is fuzzy generalized closed set in X and hence it is fuzzy generalized semi-closed.

2.3 Proposition :

Let η be a fuzzy set in a fuzzy topological spaces (*X*, τ). Then the following are equivalent :

- i. η is fuzzy open and fuzzy pre semi- closed.
- ii. η is fuzzy open and F_{pgs} - closed.

Proof:

Let η be fuzzy open and fuzzy pre semi- closed. Then, by known proposition,

"Every fuzzy pre semi- closed set in a fuzzy topological space (X, τ) is F_{pgs} - closed."

Proof:

Let λ be a fuzzy pre semi- closed set in a fuzzy topological space (X, τ) . Suppose that $\lambda \leq \nu$ and ν is a fuzzy open set in X. Then, $psCl\lambda \leq v$ and v is F_q - open in X and hence λ is fuzzy pre generalized semi- closed in X.

Hence, it is fuzzy pre generalized semi- closed.

2.3 Proposition :

Let η be a fuzzy pre-semi-closed set in a fuzzy topological space (X, τ) . If η is a fuzzy set in X such that $\eta \le \nu \le spCl\eta$, then ν is also fuzzy pre-semi-closed.

Proof:

Let $\nu \leq \mu$ and μ be fuzzy generalized-open in X. Then $\eta \leq \lambda$ and since μ is fuzzy pre semi-closed. It is clear that, $spCl\nu \leq sp Cl(sp Cl\eta) = sp Cl\eta \leq v$. Hence, ν is fuzzy pre-semi-closed.

FUZZY PRE GENERALIZED SEMI - CLOSED SETS

3.1 Definition :

A fuzzy set A of (X, τ) is called fuzzy pre generalized semi- closed (shortly, F_{pgs} -closed) if $psCl(\nu) \le \eta$, whenever $\nu \le \eta$ and η is F_s - open in X.

By fuzzy pre generalized semi- closed (X, τ) , we denote the family of all fuzzy pre generalized semi- closed sets of fuzzy topological space X. **Example :**

Let $X = \{a, b\}$ and $Y = \{x, y, z\}$ and fuzzy sets A, B, E, H, K and M be defined by :

 $\begin{array}{l} A(a) = 0.3, \ A(b) = 0.4, \ B(a) = 0.4, \ B(b) = 0.5; \\ E(a) = 0.3, \ E(b) = 0.7, \ H(a) = 0.7, \ H(b) = 0.6; \\ K(x) = 0.1, \qquad K(y) = 0.2, \qquad K(z) = 0.7; \\ M(x) = 0.9, \qquad M(y) = 0.2, \qquad M(z) = 0.5. \end{array}$

Let $\tau = \{0, A, 1\}$, $\sigma = \{0, E, 1\}$ and $\gamma = \{0, K, 1\}$. Then *B* is F_{pgs} - closed in (X, τ) but not F_{s} - closed ; *M* is F_{pgs} - closed in (Y, γ) but not F_{gs} - closed because, If we consider a fuzzy set T(x) = 0.9, T(y) = 0.2, T(z) = 0.7, then clearly $sCl(M) \leq T$ where as $M \leq T$ and *T* is fuzzy semi open in (Y, γ) and *H* is F_{pgs} - closed in (X, σ) but neither F_{pgs} -closed because, If we consider a fuzzy set L(a) = 0.8, L(b) = 0.7, then clearly $spCl(H) \leq L$ where as $H \leq L$ and *L* is fuzzy semiopen in (X, σ) nor F_{sp} - closed because $Int(Cl(Int(H))) \leq H$.

3.2 Theorem :

If A is fuzzy semi open and F_{pgs} -closed in (X, τ) , then A is a F_{ps} -closed in (X, τ) .

Proof :

Since $A \le A$ and A is fuzzy semi open and F_{pgs} - closed, then $psCl(A) \le A$. Since $A \le psCl(A)$, we have A = psCl(A) and thus A is a F_{ps} - closed set in X.

3.3 Theorem :

If A is a F_{pgs} - closed set of (X, τ) and $A \le B \le psCl(A)$, then B is a F_{pgs} - closed set of (X, τ) .

Proof :

Let *H* be a F_{s} - open set of (X, τ) such that $B \le H$. Then $A \le H$. Since *A* is F_{pgs} - closed, it follows that $spCl(A) \le H$. Now, $B \le psCl(A)$ implies $psCl(B) \le psCl(psCl(A)) = psCl(A)$. Thus, $psCl(B) \le H$. This proves that *B* is also a F_{pgs} - closed set of (X, τ) . **3.4 Definition :**

A fuzzy set A of (X, τ) is called fuzzy pre generalized semi-open (shortly, F_{pgs} - open) iff (1 - A) is F_{pgs} - closed set in X. That is , A is F_{pgs} - open iff $E \leq sp Int(A)$ whenever $E \leq A$ and E is a F_s - closed set in X. **3.5 Theorem :**

Fuzzy pre semi- open $(X, \tau) \leq$ fuzzy pre generalized semi- open (X, τ) .

Proof :

Let A any fuzzy pre semi- open set in X. Then, 1 - A is fuzzy pre semi- closed and hence, fuzzy pre generalized semi- closed. This implies that A is fuzzy pre generalized semi- open. Hence, B is fuzzy pre semi- open $(X, \tau) \le$ fuzzy pre generalized semi open (X, τ) .

3.6 Theorem :

Let A be fuzzy pre generalized semi- open in X and ps $Int(A) \le B \le A$, then B is fuzzy pre generalized semi- open.

Proof :

Suppose A is F_{pgs} - open in X and ps Int $A(A) \le B \le A$. Then 1 - A is F_{pgs} - closed and $1 - A \le 1 - B \le psCl(1 - A)$. Then 1 - A is F_{pgs} - closed and $1 - A \le 1 - B \le psCl(1 - A)$. Then 1 - B is F_{pgs} - closed set. Hence, B is F_{pgs} - open set in X.

FUZZY PRE GENERALIZED SEMI- IRRESOLUTE MAPPINGS :

4.1 Theorem :

Let $f: (X, \tau) \to (Y, \sigma)$ be F_{pgs} - irresolute, then f is F_{pgs} - continuous.

Proof :

Proof is immediate as every fuzzy closed set is F_{pgs} - closed and f is F_{pgs} - irresolute map.

4.2 Theorem :

Let $f : (X, \tau) \to (Y, \sigma)$ be fuzzy irresolute and fuzzy semi- closed. Then for every F_{pgs} - closed set A of X, f(A) is a F_{pgs} - closed in

Y. Proof:

Let A be a F_{pgs} - closed set of X. Let V be a fuzzy semi open set of Y containing f(A). Since f is fuzzy irresolute, $f^{-1}(V)$ is a fuzzy semi open set of X. As $A \le f^{-1}(V)$ and A is a F_{pgs} - closed in X, then $psCl(A) \le f^{-1}(V)$ implies that $f(psCl(A)) \le V$. Since f is fuzzy semi preclosed, then f(psCl(A)) = psCl(f(spCl(A))).

Then,
$$spCl(f(A)) \le spCl(f(spCl(A))) = f(psCl(A)) \le V$$

Therefore, f(A) is a F_{pgs} - closed set in Y.

FUZZY PRE- SEMI- T_{1/2} SPACES :

5.1 Proposition :

Every fuzzy pre semi- $T_{1/2}$ space is a fuzzy pre semi- $T_{1/3}$ space.

Proof:

Let (X, τ) be a fuzzy pre semi- $T_{1/2}$ space and μ be a F_{pgs} - closed set in (X, τ) . Then μ is fuzzy pre semi- closed. Then, (X, τ) is a fuzzy semi- $T_{1/3}$ space.

5.2 Proposition :

Every fuzzy pre semi- $T_{3/4}$ space is a fuzzy pre semi- $T_{1/2}$ space.

Proof:

Let (X, τ) be a fuzzy pre semi- $T_{3/4}$ space and ν be a fuzzy pre semi- closed set in (X, τ) . Then, ν is fuzzy pre closed. Then, (X, τ) is a fuzzy pre semi- $T_{1/2}$ space. Converse of the above proposition is not true as seen in the following example.

Example :

Let (X, τ) be a fuzzy topological space, where $X = \{a, b, c\}$ and

 $\tau = \left\{ 0, 1, \nu_1 = \frac{1}{a} + \frac{0}{b} + \frac{0}{c}, \nu_2 = \frac{0}{a} + \frac{1}{b} + \frac{0}{c}, \nu_3 = \frac{1}{a} + \frac{1}{b} + \frac{0}{c} \right\}.$ Fuzzy closed sets in (X, τ) are

$$0,1, \nu'_{1} = \frac{0}{a} + \frac{1}{b} + \frac{1}{c}, \nu'_{2} = \frac{1}{a} + \frac{0}{b} + \frac{1}{c}, \nu'_{3} = \frac{0}{a} + \frac{0}{b} + \frac{1}{c}.$$

If η is fuzzy generalized-closed then $\eta \le \nu$ implies $Cl\eta \le \nu$ whenever ν is fuzzy open. Thus, fuzzy generalized-closed sets in (X, τ) are :

$$1, \nu'_1 = \frac{0}{a} + \frac{1}{b} + \frac{1}{c}, \nu'_2 = \frac{1}{a} + \frac{0}{b} + \frac{1}{c}, \nu'_3 = \frac{0}{a} + \frac{0}{b} + \frac{1}{c} and \frac{\alpha_1}{a} + \frac{\alpha_2}{b} + \frac{\alpha_3}{c}$$

Where $\alpha_3 \neq 0$. So, the family of fuzzy generalized-open sets in (X, τ) is

$$\left\{0,1,\frac{\alpha_1}{\alpha}+\frac{\alpha_2}{b}+\frac{\alpha_3}{c} \text{ where } \alpha_3 \neq 1\right\}.$$

It is enough to prove that, if η is not fuzzy semi-pre-closed then it is not fuzzy pre-semi-closed and there is a fuzzy pre-semi-closed set which is not pre-closed. Let $\eta \neq 0$ be a fuzzy set in X. Then,

$$Int \eta = \begin{cases} 0 & 0 \\ v_1 & v_2 \\ v_2 & v_3 \\ 1 & 0 \end{cases}, Cl Int \eta = \begin{cases} 0 & 0 \\ v'_2 \\ v'_3 & and Int Cl Int \eta \\ 1 \\ 1 & 0 \end{cases} = \begin{cases} 0 \\ v_1 \\ v_2 \\ 1 \\ 1 \\ 1 \end{cases}$$

So, η is not fuzzy semi-pre-closed if $v_3 \leq \eta$. In that case, η is also not fuzzy pre-semi-closed. For η is fuzzy generalized-open and $\eta \leq \eta$. But sp $Cl\eta \ge \eta \lor Int Cl Int v = 1 > \eta$. Thus X is a pre-semi- $T_{1/2}$ space.

$$v = \frac{1}{a} + \frac{0.3}{b} + \frac{0}{c}$$

Is a fuzzy semi-pre-closed. Hence it is fuzzy pre-semi-closed but it is not fuzzy pre-closed, as Cl Int $\nu \neq \nu$.

CONCLUSION:

In this paper, by the introduction of fuzzy pre semi- closed sets, we have equivalences of fuzzy spaces namely, fuzzy pre semi- $T_{1/3}$ space, pre semi- $T_{3/4}$ space and fuzzy pre semi- $T_{1/2}$ space.

REFERENCES:

- [1] H. Maki et al., Generalized closed sets in fuzzy topological space, I, Meetings on Topological spaces theory and its applications (1998), 23-36.
- [2] S. S. Thakur and S. Singh, On fuzzy semi- pre open sets and fuzzy semi- pre continuity, Fuzzy sets and systems 98(1998), 383-391.
- [3] M. K. R. S. Veera kumar, pre semi- closed sets, Indian J. Math. 44(2) (2002), 165-181.
- [4] R. K. Saraf, and M. Khanna, Fuzzy generalized semi pre closed sets, J. Tripura Math. Soc.3(2001) 59-68.
- [5] R. K. Saraf, and M. Khanna, On gs- closed sets in fuzzy topology, J. Indian Acad. Math. 25(1) (2003), 133-143.
- [6] R. K. Saraf, G. Navalagi and Meena Khanna, On fuzzy semi pre-generalized closed sets, Bull. Mal. Mat. Sci. Soc. 28(1)(2005), 19-30.
- [7] J. H. Park and J. K. Park, On regular generalized fuzzy closed sets and generalizations of fuzzy continuous functions, Indian J. Pure Appl. Math. (2003), 1013-1024.
- [8] G. Balasubramanian and P. Sundaram, On some generalizations of fuzzy continuous functions, Fuzzy Sets and Systems (1997), 93-100.
- [9] K. M. Abd El-Hakiem, Generalized semi-continuous mappings in fuzzy topological spaces, J. Fuzzy Math. (1999), 577-589.
- [10] B. Ghosh, Semi-continuous and semi-closed mappings and semi-connectedness in fuzzy setting, Fuzzy Sets and Systems (1990), 345-355.
- [11] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. (1968), 182-190.